The Co-Sn-Zr (Cobalt-Tin-Zircoium) System

K.P. Gupta, The Indian Institute of Metals, Calcutta

Introduction

The Co-Sn-Zr system has been studied and one isothermal section has been established at reasonably low temperature and is reported here.

Binary Systems

The Co-Sn binary system [1983Nis, Massalski2] (Fig. 1) has three intermediate phases: Co₃Sn₂ in two allotropic forms Co₃Sn₂ (η) above ~500 °C and Co₃Sn₂ (η ₁) below 500 °C, CoSn (π) and CoSn₂ (ζ). The η phase melts congruently at ~1170 °C and the other two phases form through peritectic reactions: L + $\eta \leftrightarrow \pi$ at 936 °C and L + $\pi \leftrightarrow \zeta$ at 525 °C. Two eutectic reactions L $\leftrightarrow \gamma + \eta$ and L $\leftrightarrow \zeta + \beta$ occur at 1112 °C and 229 °C, respectively. The γ and β phases are the terminal solid solutions of fcc α Co and of tetragonal β Sn, respectively. The $\gamma \leftrightarrow \varepsilon$ transformation possibly occurs through a eutectoid type reaction at ~420 °C where ε is the terminal solid solution of close packed hexagonal (cph) ε Co.

The Co-Zr system [Massalski2] (Fig. 2) shows the presence of five intermediate phases $Co_{11}Zr_2$ (ψ), Co_4Zr (ι), Co_2Zr (λ_2), CoZr (β_1), and $CoZr_2$ (ξ). The

probable presence of another phase CoZr₃ (v) was reported but requires further confirmation. With the Co₂Zr phase being an exception, all other phases are stoichiometric compounds. The Co₂Zr, CoZr, and CoZr₂ phase are believed to melt congruently at approximately 1620, 1420, and 1125 °C, respectively. The ψ and ι phases form through peritectic reactions: L + $\lambda_2 \leftrightarrow$ L at 1452 °C and L + $\iota \leftrightarrow \psi$ at 1272 °C. Four eutectic reactions occur in the Co-Zr system: L $\leftrightarrow \gamma + \psi$ at 1222 °C, L $\leftrightarrow \lambda_2 + \beta_1$ at 1312 °C, L $\leftrightarrow \beta_1 + \xi$ at 1061 °C, and L $\leftrightarrow \xi + \alpha$ at 981 °C where α is the body centered cubic (bcc) terminal solid solution of β Zr. A eutectoid reaction $\alpha \leftrightarrow \xi + \varepsilon_2$ occurs at 834 °C where ε_2 is the cph terminal solid solution of α Zr. In the Co-rich region possibly a eutectoid reaction $\gamma \leftrightarrow \psi + \varepsilon_1$ occurs at ~422 °C.

The Sn-Zr system [Massalski2] (Fig. 3) has three intermediate phases, $SnZr_4(\theta)$, $Sn_3Zr_5(\omega)$, and $Sn_2Zr(\phi)$ of which the ω phase melts congruently at 1988 °C. The probable existence of another phase Sn_4Zr_5 (T) has been suggested in the SnZr system. The θ and ϕ phases form through peritectoid and peritectic reactions: $\omega + \alpha \leftrightarrow \theta$ at 1327 °C and L + $\omega \leftrightarrow \phi$ at 1142 °C.

The reaction through which the T phase forms is not known. Two eutectic reactions $L \leftrightarrow \alpha + \omega$ and $L \leftrightarrow \phi + \beta$ occur at 1592 and ~232 °C, respectively. The cph ε_2 phase forms through a peritectoid reaction $\alpha + \theta \leftrightarrow \varepsilon_2$ at 982 °C where ε_2 is the cph terminal solid solution αZr .

Fig. 1 The Co-Sn binary system [Massalski2]

Fig. 2 The Co-Zr binary system [Massalski2]

Fig. 3 The Sn-Zr binary system [Massalski2]

Binary and Ternary Phases

In the three binary systems Co-Sn, Co-Zr, and Sn-Zr given by [Massalski2] 11 intermediate phases form. Two

more phases, one is the Co-Zr system and the other is the Sn-Zr system, have been reported but possibly require further confirmation. In the Co-Sn-Zr system four ternary intermediate phases form. The binary and ternary phases of

Phase designation	Composition	Pearson's symbol	Space group	Туре	Lattice parameters, nm		
					a	b	с
γ	(aCo)	cF4	$Fm\bar{3}m$	Cu			
ε ₁	(eCo)	hP2	$P6_3/mmc$	Mg			
α	(βZr)	Cl2	Im3m	W			
ε2	(aZr)	hP2	$P6_3/mmc$	Mg			
β	(BSn)	tl4	I4 ₁ /amd	βSn			
η	Co ₃ Sn ₂ (HT)	hP4	$P6_3/mmc$	AsNi	0.411		0.5183
η_1	$Co_3Sn_2(LT)$	oP20	Pnma	Ni ₃ Sn ₂			
π	CoSn	hP6	P6/mmc	CoSn	0.5279		0.4259
ζ	CoSn ₂	<i>tl</i> 112	I4/m	Al ₂ Cu	0.6361		0.5452
ψ	$Co_{11}Zr_2$						
l	Co ₄ Zr	<i>cF</i> 116	$Fm\bar{3}m$	$Mn_{23}Th_6$	1.1516		
λ_2	Co ₂ Zr	<i>cF</i> 24	$Fd\bar{3}m$	Cu ₂ Mg	0.69512		
β ₁	CoZr	<i>cP</i> 2	Pm3m	CsCl	0.3197		
ξ	CoZr ₂	<i>tl</i> 12	I4/mcm	Al ₂ Cu	0.6364		0.5518
ν	CoZr ₃ (a)	oC16 hP8	Cmcm P6 ₃ /mmc	Re2BNi3Sn			
φ	SnZr ₂	oF24	Fddd	TiSi ₂	0.957	0.564	0.992
Т	Sn ₄ Zr ₅ (a)	hP18		GaTi ₅			
ω	Sn ₃ Zr ₅	hP16	P6 ₃ /mcm	Mn ₅ Si ₃	0.8461		0.5795
θ	SnZr ₄	cP8	$Pm\bar{3}m$	Cr ₃ Si	0.565		
ψ	CoSnZr		$P\bar{6}2m$	AlNiZr	0.7133		0.3571
Ω	Co ₂ SnZr		Fm3m	AlCu ₂ Mn	0.6227		
Δ	Co1.65Sn1.35Zr6		$P\bar{6}2m$		0.7971		0.3453
Φ	$\mathrm{Co}_6\mathrm{Sn}_{18}\mathrm{Zr}_5$				1.3268		
(a) Probably exists							

Table 1 Binary and ternary phases of the Co-Sn-Zr system and their structure data

the Co-Sn-Zr system and their structure data are given in Table 1.

Ternary System

The Co-Sn-Zr system has been studied by [1995Sta] using 125 alloys, arc melted under purified argon atmosphere. High purity component elements, electrolytic Co of 99.6 mass% purity, Sn of 99.99 mass% purity, and iodide Zr of 99.9 mass% purity, were used to prepare the alloys. For annealing, the alloys were sealed in evacuated quartz capsules. The alloys containing ≤40 at.% Sn were first annealed at 797 °C for 240 h and subsequently annealed at 497 °C for 240 h. The alloys with >40 at.% Sn were directly annealed at 497 °C for 240 h. The alloys after annealing were quenched in cold water. For phase analysis and phase identification, a Dehye Scherrer x-ray powder diffraction camera was used. For a few ternary intermediate phases structure analysis was done by using Laue and rotating crystal techniques and for structure refinement a diffractometer was used.

The 497 °C isothermal section of Co-Sn-Zr system established by [1995Sta] is given in Fig. 4. Four ternary intermediate phases were found of which two of the phases Co-Sn-Zr (ψ) and CoSnZr (Ω) were reported earlier by

[1986Sko] and [1976Sob], respectively. The two new ternary intermediate phases were found to exist with approximate compositions of $CoSn_3Zr$ (ϕ) and $CoSnZr_4$ (Δ) . The binary intermediate phases were found to have very limited solubility ~ 1 at.% of a third element. Even though the binary diagrams of Co-Zr and Sn-Zr systems do not include the CoZr₃ (v) and Sn₄Zr₅ (γ) phases, the 497 °C isothermal section by [1995Sta] show these two phases. These two phases were found in equilibrium with the ternary intermediate phases Δ and ψ , respectively. The CoSnZr (Ω) phase region is a small elongated region extending along a line joining Co and Sn₅₀Zr₅₀ composition, extending from $\sim 40\% \sim 50$ at.% Co. The Ω phase was found in equilibrium with the λ_2 , η_1 , π , ζ , ϕ , ψ , and ω phases. The ψ phase was found in equilibrium with the Φ, ϕ, T, Ω , and ω phases. The Φ phase was reported to be in equilibrium with the Ω, ψ, ζ , Sn, and ϕ phases. Since at 497 °C Sn is in liquid form the Φ phase should be in equilibrium with liquid Sn. The Δ phase was found in equilibrium with the β_1 , ξ , ν , θ , and ω phases. The Co₁₁Zr₂ (ψ) phases exists in the Co-Zr binary system but the investigation by [1995Sta] does not show this phase in the isothermal section at 497 °C. The Co-corner of the Co-Sn-Zr thus appears to be incomplete and should be reinvestigated. The binaries Co-Zr system and Sn-Zr system also should be carefully studied to establish the existence as well as the mode of formation of the CoZr₃ and Sn₄Zr₅ phases.

Fig. 4 Isothermal section of the Co-Sn-Zr system at 497 °C [1995Sta]

Of the four ternary intermediate phases found in the Co-Sn-Zr system, two intermediate phases CoSnZr and Co₂SnZr were reported earlier by [1974Dwi] and [1976Sob], respectively. The CoSnZr phase was reported to be of Fe₂P type with lattice parameters a = 0.7156 nm and c = 0.3563 nm and the Co₂SnZr phase was reported to be of BiF₃ type with lattice parameter a = 0.6285 nm. [1986Sko], however, reported the CoSnZr phase to be of AlNiZr type, a superstructure of Fe₂P type structure, with lattice parameters a = 0.7133 nm, c = 0.3571 nm, and γ = 120° . [1986Sko] also showed that the Co₂SnZr phase to be of AlCu₂Mn type with lattice parameter a = 0.6234 nm. Laue and rotation x-ray diffraction patterns taken with a single crystal extracted from the CoSnZr₄ alloy showed that this phase is of Fe₂P type with lattice parameter a =0.7971 nm and c = 0.3453 nm. Structure refinement was done using a diffractometer. The structure was found to be a superstructure of Fe₂P type structure and the ideal composition was reported to be Co_{1.65}Sn_{1.35}Zr₆. An x-ray diffraction pattern of CoSn₃Zr phase was found to closely resemble the diffraction pattern of a phase found in the Er-Rh-Sn system having a composition $Sn_{1-x}(Sn_{1-x}Zr_x)$ Zr₄Rh₆Sn₁₈ which has a cubic structure. The diffraction pattern of an alloy with composition Co₂₀Sn₆₅Zr₁₅could be indexed reasonably well with a cubic cell with lattice

parameter a = 1.3682 nm. On the basis of similarity of this diffraction pattern of the Co₂₀Sn₆₅Zr₁₅ alloy with that of the Er-Rh-Sn phase, the composition for the CoSn₂Zr phase has been given a tentative composition identification of Co₆Sn₁₈Zr₅ phase. Further work has to be done to identify the Co₆Sn₁₈Zr₅ phase.

References

- 1974Dwi: A.E. Dwight, Alloying Behavior of Zirconium, Hafnium and the Actinides in Several Series of Isostructural Compounds, J. Less Common Met., 1974, 34, p 279-284
- **1976Sob:** R. Sobczak, Magnetic Measurement of Heusler Phases Co₂xy (x = Ti, Zr, Hf, V, Nb, Cr, Mn, and Fe; y = Al, Ga, Si, Ge and Sn), *Monat. Chemn.*, 1976, **107**, p 977-983, in German
- 1983Nis: T. Nishizawa and K. Ishida, The Co-Sn System, Bull. Alloy Phase Diag., 1983, 4(4), p 389-390, Evaluation
- 1986Sko: R.V. Skolozdra, Yu.V. Stadnyk, and E.E. Starodynova, The crystal structure and magnetic properties of Me'Me"Sn compounds, *Ukr. Fiz. Zh.*, 1986, 31(8), p 1258-1262, in Russian
- 1995Sta: Yu.V. Stadnyk, L.p. Romaka, V.K. Pecharskii, and R.V. Skolozdra, 770K Section Through the Zr-Co-Sn Phase Diagram and Crystal Structure of Zr₆Ci_{1.65}Sn_{1.35}, *Inorg. Mater.*, 1995, 31(11), p 1290-1293

Co-Sn-Zr evaluation contributed by **K.P. Gupta**, the Indian Institute of Metals, Metal House, Plot 13/4, Block AQ, Sector V, Calcutta, India. Literature searched through 1996. Dr. Gupta is the Alloy Phase Diagram Co-Category Program Editor for ternary nickel alloys.